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Pedestrian Behavior Prediction
for Automated Driving:

Requirements, Metrics, and Relevant Features
Michael Herman, Jörg Wagner, Vishnu Prabhakaran, Nicolas Möser,

Hanna Ziesche, Waleed Ahmed, Lutz Bürkle, Ernst Kloppenburg, and Claudius Gläser

Abstract—Automated vehicles require a comprehensive under-
standing of traffic situations to ensure safe and comfortable driv-
ing. In this context, the prediction of pedestrians is particularly
challenging as pedestrian behavior can be influenced by multiple
factors. In this paper, we thoroughly analyze the requirements
on pedestrian behavior prediction for automated driving via
a system-level approach: to this end we investigate real-world
pedestrian-vehicle interactions with human drivers. Based on
human driving behavior we then derive appropriate reaction
patterns of an automated vehicle. Finally, requirements for the
prediction of pedestrians are determined. This also includes a
novel metric tailored to measure prediction performance from a
system-level perspective. Furthermore, we present a pedestrian
prediction model based on a Conditional Variational Auto-
Encoder (CVAE) which incorporates multiple contextual cues to
achieve accurate long-term prediction. The CVAE shows superior
performance over a baseline prediction model, where prediction
performance was evaluated on a large-scale data set comprising
thousands of real-world pedestrian-vehicle-interactions. Finally,
we investigate the impact of different contextual cues on pre-
diction performance via an ablation study whose results can
guide future research on the perception of relevant pedestrian
attributes.

Index Terms—Autonomous vehicles, Automated driving, Pre-
diction methods, Machine learning.

I. INTRODUCTION

ROAD safety is a key driver for the development of driver
assistance and automated driving systems. According to

a report of the World Health Organization [1] traffic accidents
cause more than 1.3 million fatalities annually, almost half
of them being vulnerable road users (VRUs). Therefore, the
protection of VRUs, in particular pedestrians, constitutes a
major goal of intelligent vehicles. The Automatic Emergency
Braking system for Pedestrians (AEB-P) is a good example
on how driver assistance systems already protect pedestrians
today. AEB-P detects pedestrians in the predicted vehicle’s
path and, if a collision cannot be avoided by the driver, auto-
matically initiates emergency breaking. By either avoiding the
collision or, if avoidance is not possible, reducing the velocity
of an impact, pedestrian AEB systems mitigate pedestrian
fatality and injury [2]. The detection of pedestrians and the
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Fig. 1. Exemplary scenario in which the behavior of a pedestrian depends on
multiple contextual cues, e.g. the present road infrastructure or interactions
with other traffic participants.

prediction of their behavior are essential components of an
AEB-P system. Prediction of an AEB-P is generally restricted
to short prediction horizons in the order of 1 to 2 s and is
typically based on kinematic models.

On the other hand, automated driving not only addresses
near-collision situations, but broadens the scope to everyday
driving scenarios. Thus, besides collision mitigation, com-
fortable driving that imitates human driving behavior shifts
into focus. This requires an extended pedestrian behavior
prediction to correctly reason about a situation and react ap-
propriately at an early stage. Long-term pedestrian prediction,
however, constitutes a big challenge, since the behavior of
pedestrians is influenced by many aspects. The exemplary
scenario of a girl running along a sidewalk depicted in Fig. 1
illustrates this issue. The future behavior of the running girl
is likely to depend on a variety of factors, e.g. the course of
the sidewalk, the people on the sidewalk blocking her path,
the trajectory of an approaching vehicle, and the presence
of a zebra crossing. We thus argue that the behavior of
pedestrians cannot be investigated independently, but rather
has to be considered within the context of the overall traffic
scene. This includes the static driving infrastructure (e.g. the
road layout), interactions of the pedestrian with other traffic
participants (e.g. an approaching vehicle), and appearance or
communication cues (e.g. gestures).

In this paper, we derive requirements on pedestrian behavior
prediction in the context of automated driving. In addition, we
propose a prediction model that specifically addresses long-
term prediction by taking into account contextual cues of the
traffic scene. In detail, the contributions of the paper are:

• An appropriate system reaction pattern for interactions of
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an automated vehicle with pedestrians is derived from an
analysis of human driving behavior,

• Requirements for pedestrian behavior prediction in au-
tomated driving and a corresponding metric to assess
prediction performance are specified,

• A pedestrian prediction model based on a Condi-
tional Variational Auto-Encoder (CVAE) which incorpo-
rates various contextual cues is presented. The CVAE
shows superior performance over a baseline prediction
model, where prediction performance is evaluated on a
large-scale dataset comprising thousands of real-world
pedestrian-vehicle-interactions,

• Relevance of different contextual cues is assessed based
on an ablation study.

The remainder of this paper is organized as follows: We
first give an overview on related work in Sec. II. We then
introduce our large-scale dataset of vehicle-pedestrian inter-
actions in Sec. III. In Sec. IV we analyze pedestrian-vehicle
interactions to determine human driving behavior and to derive
requirements on pedestrian prediction for automated driving.
Our prediction model is introduced in Sec. V and thoroughly
evaluated in Sec. VI. Finally, we conclude the paper with a
discussion of our results in Sec. VII.

II. RELATED WORK

In this section, we give an overview of state of the art ap-
proaches as well as typical input features applied to pedestrian
prediction. Furthermore, evaluation metrics and public datasets
are briefly summarized. For a more comprehensive overview,
we refer the reader to [3].

A. Existing Models

Predicting future motion of traffic participants is an exten-
sively studied field. Many traditional approaches depend on a
set of explicitly defined dynamics equations that are generally
derived from physics-based motion models [3]. Often, these
approaches use Probabilistic Graphical Models to define these
relations [4], [5], [6].

Recently, pattern-based methods that learn behavioral pat-
terns from data have outperformed traditional approaches.
Especially, deep learning based solutions became state of the
art for most of the problems related to public datasets. Often,
Recurrent Neural Networks (RNN) are used for encoding
trajectories of interacting agents and decoding future behavior
[7], [8], [9]. One of the major problems associated with these
approaches is to accurately capture the probabilistic, multi-
modal distribution over trajectories. In order to address this
issue recent deep learning based methods predict paramet-
ric distributions [7], learn mixtures of Gaussian trajectory
distributions [10], use adversarial training approaches [11],
or introduce discrete [12] or continuous [13], [14], [15]
latent variables. The models presented in this paper build on
Conditional Variational Autoencoders (CVAE) [16], which use
continuous latent variables to capture complex, multi-modal
probability distributions.

B. Used Features

Human behavior is influenced by contextual cues of internal
and external stimuli. The survey [3] groups them into three
categories: cues of the target agent, the dynamic environment,
and the static environment. Potential target agent cues are the
motion state (e.g. position, velocities) [6], [7], [9], appearance
based cues (e.g. head or body pose) [17], or semantic attributes
(e.g. age or gender) [18]. While traditional models often do
not take into account influences of the dynamic environment
[19], [20], [21], other approaches exist that model interactions
with other agents [22], [23], [7] or even social groups [24].
Regarding cues of the static environment, there are several
approaches that neglect this influence [25], [26], some others
only model influence of individual static objects [27], while
still others model more complex influences from environment
geometry and topology [28], [29].

C. Evaluation Metrics

Performance evaluation is an integral part of the process
of creating a prediction model. The survey [3] extensively
discusses different metrics for models that predict trajec-
tories. These metrics fall into two classes, geometric and
probabilistic. A widely used geometric metric is the average
displacement error (ADE), which applies to models providing
point predictions. ADE measures the euclidean distance of a
predicted trajectory from ground truth positions at a specific
prediction time interval, averaged over the trajectory, or over
multiple trajectories. A common misuse of ADE is applying
it to probabilistic predictions, averaging over the predictive
distribution as well.

Probabilistic metrics are used for models that provide
predictions in the form of probability densities. This kind
of metrics measures how well the predictions capture the
uncertainties inherent to the prediction process as well as
the true process. A typical metric here is average (negative)
log likelihood of the ground truth positions. Another example
would be Kullback-Leibler divergence. Unfortunately, these
kind of metrics tends to lack intuitive interpretability. One
subtlety with the different probabilistic metrics is whether they
encourage multimodal predictive distributions or not.

This leads to the question whether the metrics discussed
so far measure properties relevant for possible applications
of the model under consideration. [30] discuss the problem
of evaluating generative (probabilistic) models and come to
the conclusion that application specific metrics are generally
required. This is done by [31] for a pedestrian prediction
application. The authors pose their prediction task as an intent
classification problem, and use a classification performance
metric. A standard graphical classification performance metric
for classifiers with binary predictions are ROC curves [32],
with the related numerical metric AUC which measures the
area under the curve. Classifiers that predict class probabilities
allow for continuous numerical metrics like log loss [33], also
known as cross entropy, which is widely used in machine
learning.
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D. Datasets

In contrast to the large number of datasets devoted to
pedestrian detection there is only a limited number of datasets
that address pedestrian prediction in automated driving con-
text. Most notably the latter include the Joint Attention in
Autonomous Driving (JAAD) dataset [34], the Pedestrian In-
tention Estimation (PIE) dataset [35], and the Daimler Pedes-
trian Path Prediction Benchmark dataset [36]. Each of them
only covers video recordings, which renders them suitable
to benchmark computer vision algorithms. However, they are
limited in use for investigating trajectory prediction which is
usually carried out in birds-eye view. Other datasets comprise
such top-view trajectories (e.g. ETHZ dataset [37], Stanford
Drone Dataset (SDD) [24]), but where recorded in non-
automotive scenes. Recently, various large scale automotive
datasets were published (e.g. [38], [39], [40], [41]), many of
them comprising tracking or motion forecasting challenges,
too. However, they mainly focus on the task of predicting
other vehicles and thus lack a significant number of scenes
that cover pedestrian-vehicle interactions. To overcome this
shortage, we created a large-scale dataset that specifically
addresses pedestrian prediction in automated driving context.
We will introduce the dataset in the following section.

III. DATASET

A. Data Collection

The dataset we refer to in this paper comprises vehicle-
pedestrian interactions from inner-city traffic in southern Ger-
many. The data was recorded on four different round-courses
with lengths between 2 and 4 km. The routes were chosen
to maximize variability of traffic scenarios including both
downtown and suburban areas, different road sizes, traffic
densities, and number of pedestrians. Furthermore, the routes
contain various traffic control elements which are relevant for
vehicle-pedestrian interactions, most notably zebra crossings,
pedestrian refuge islands, or a combination of both.

To further increase scenario coverage a number of actors
were positioned at different locations along the courses. The
instruction of actors followed a semi-scripted approach where
actors were told not to perform specific interactions with the
recording vehicle but rather to arbitrarily vary their walking
routes, interactions and behavior in a realistic manner. Since
actors had to adapt their behavior to the respective traffic
situation, including the recording vehicle and other traffic

64%
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(a) round courses
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1%17%
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(b) crossing location

Fig. 2. Dataset statistics: (a) depicts the distribution of pedestrian tracks with
respect to the four courses; (b) illustrates the locations at which pedestrians
crossed the street.

Fig. 3. Example of labeled pedestrian attributes: The compass plots depict
head and body orientation, where the filled upper compass indicates that the
pedestrian is looking at the ego-vehicle.

participants, the setup proved to result in a great variety of
realistic vehicle-pedestrian interactions.

The recordings were carried out during three weeks in
fall of 2018. Overall, we recorded 80 hours of data using
different drivers to reduce driving style biases. Data acquisition
was performed using a Bosch test vehicle equipped with
various surround sensors. The recorded data comprises 3D
point clouds of a 360 degree LiDAR sensor and images of
two front-facing cameras with horizontal opening angles of
45 and 90 degrees, respectively. Furthermore, an IMU with
differential GPS provides precise information on the ego-
vehicle’s position and motion.

B. Data Labeling

Data post processing included an automatic extraction of
pedestrian trajectories. As a first step, we applied pedestrian
detectors on the recorded point cloud and image data, re-
spectively. The detections from the different sensors were
subsequently matched and finally tracked in 3D using Kalman
filtering with constant velocity models. Overall, we could
extract 99,011 pedestrian tracks from our recordings, out of
which 7 % are crossing the road. Fig. 2 illustrates the dis-
tribution of tracks with respect to the different round courses
and crossing locations. We finally excluded pedestrian tracks
at traffic lights because behavior there is mostly deterministic
given the traffic light states.

Fig. 4. Semantic map of one round course overlaid to a road map. Different
colors denote different semantic classes.
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Fig. 5. Two traffic scenarios of a vehicle approaching a pedestrian crossing the roadway. In scenario (a) the driver brakes in order to maintain a time-to-collision
above approximately 2 s while the pedestrian is traversing the driving corridor of the vehicle. In scenario (b) the driver maintains a sufficiently large time gap
between his vehicle and the pedestrian without having to brake.

To enable an investigation of potentially behavior-relevant
features, we further performed hand-labeling of a subset of
10,159 pedestrians. For the labeling, the tracks were randomly
selected while ensuring that tracks are balanced between
crossing and non-crossing pedestrians as well as location (i.e.
presence of different traffic control elements). As depicted in
Fig. 3, the frame-wise labels include body and head orientation
(in degrees).

Finally, we created semantic maps of the round courses via
hand-labeling of decimeter-level accurate aerial orthoimages
(see Fig. 4). These maps comprise the locations of roads,
sidewalks, cycle tracks, bus lanes, barred areas, zebra cross-
ings, refuge islands, traffic lights, lawn, and buildings. The
trajectories of the ego-vehicle as well as those of the detected
pedestrians hence can be projected onto the map, given the
precise global position recordings of the ego-vehicle.

IV. REQUIREMENTS ON PEDESTRIAN BEHAVIOR
PREDICTION

A. Analysis of Human Driving Behavior

In order to define a suitable system behavior of an auto-
mated vehicle, we investigated different scenarios where a
human driver interacts with pedestrians crossing the roadway
in front of the vehicle. These scenarios were taken from the
dataset described in Section III. Two typical examples are
depicted in Fig. 5.

A common measure for the criticality of a driving situation
is the time-to-collision TTC = d/v. It is calculated from the

distance to an obstacle d, in our case a pedestrian, in relation
to the driving velocity v and thus indicates the time required
for a vehicle to hit the obstacle assuming constant velocity.

The graph in Fig. 5a shows the velocity (green) and the
TTC (blue) of a vehicle approaching a pedestrian who crosses
the road from left to right. The two vertical dashed lines at
t1 = 2.6 s and t2 = 4.5 s mark the points in time at which the
pedestrian enters and leaves the driving corridor of the vehicle,
respectively. For the analysis in this paper we assume a driving
corridor width of 3m. Overall it takes the pedestrian 1.9 s
to traverse the danger zone of the driving corridor. At time
t1, when they enter the corridor, the TTC of the approaching
vehicle is 2.9 s and at time t2, when the pedestrian leaves the
corridor again, TTC is 2.1 s.

As soon as the driver recognizes that the pedestrian intends
to cross the roadway, they slightly start to brake their vehicle
at t = 1.5 s. This can be clearly seen by the decrease in slope
of the vehicle velocity and by the increase in slope of the TTC
curves, respectively. By slightly braking, the driver maintains a
TTC above approximately 2 s while the pedestrian is traversing
the driving corridor. As soon as the pedestrian has left the
corridor and is thus out of the danger zone, the driver releases
the brake at t = 4.8 s and shortly afterwards accelerates the
vehicle.

In contrast, the dashed blue line in the graph indicates how
the TTC would evolve over time if the driver did not brake
and maintained a constant velocity. In this case, the vehicle
would approach the pedestrian faster leading to smaller TTC
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Fig. 6. Cumulative distribution function (red) and number of occurrences
(blue) of the minimum time gap while pedestrians traverse the driving corridor
of an approaching vehicle. The median of the distribution is at a minimum
time gap of 2.84 s.

values while the pedestrian is traversing the driving corridor.
Here, the TTC would drop to a value of 0.5 s at t2 when the
pedestrian leaves the driving corridor.

Fig. 5b depicts another traffic scenario with a vehicle ap-
proaching a pedestrian crossing the roadway from right to left.
Again, the dashed vertical lines indicate when the pedestrian
enters and leaves the driving corridor, respectively. In contrast
to the previous case, the driver neither brakes nor accelerates
while their vehicle is approaching the pedestrian. This is due to
the fact that the time gap already is at a safe level > 2.9 s while
the pedestrian is traversing the driving corridor and, therefore,
the driver does not have to take any action but rather maintains
a constant velocity of approximately 14 km/h.

These two examples suggest that human drivers try to
establish a time gap between the pedestrian and their vehicle
that does not fall below a certain threshold value for the time
span while a pedestrian traverses the driving corridor. This
hypothesis is also confirmed by a statistical analysis of the
minimum time gaps which occur in crossing scenarios. To
this end, 2,238 scenarios of pedestrians crossing the roadway
from right to left and vice versa in front of an approaching
vehicle were identified in the data set. For these scenarios,
the minimum time gaps occurring while the pedestrians were
traversing the vehicle corridor were determined.

Fig. 6 shows the cumulative distribution function (red) and
the number of occurrences (blue) of these scenarios as a
function of the minimum time gap. The onset of individual
scenarios occurs at a minimum time gap of 0.6 s and the
distribution reaches the maximum number of occurrences in
the right-open interval between 2.3 s and 2.4 s. The median of
the distribution is at a minimum time gap of 2.84 s, the first
and third quartiles are at 2.09 s and 3.92 s, respectively.

The distribution function of minimum time gaps thus shows
that drivers try not to fall below a certain threshold value for
the time gap between their vehicle and the pedestrian crossing,
which is perceived as safe and comfortable by both parties. If
the initial situation of a crossing scenario leads to a time gap
lower than the threshold value, the driver reacts by adjusting

the speed of their vehicle accordingly, e.g. by applying the
brakes. Furthermore, the results show that a minimum time
gap of at least 2.8 s (i.e. the median of the distribution) is
perceived as safe and comfortable by the majority of traffic
participants.

B. Derived AD System Reaction Pattern
Based on our analysis of human driving behavior we next

derive system reactions of an automated vehicle that should
mimic those of human drivers. For the sake of simplicity
we focus on longitudinal vehicle control, i.e. the adaption
of the vehicle’s velocity along a predefined or planned path.
As shown in the previous section, the observed minimum
time gap between a vehicle and a pedestrian traversing the
driving corridor is of particular importance in this respect.
Our analysis suggests, that there is a threshold value below
which a situation is perceived uncomfortable or even critical.
The acceptance of time gaps is, of course, subjective and
may depend on driving style, street layout, or traffic density.
However, the histogram in Fig. 6 suggests that time gaps below
2 s (i.e. approximately the first quartile of the distribution)
are seldom observed and hence also should be avoided by an
automated vehicle.

To realize an adequate system behavior we suggest that
an automated vehicle monitors its future driving corridor, in
particular with respect to violations of a defined minimum time
gap. As illustrated in Fig. 7, we consequently define a comfort
zone that extends along the vehicle’s future path. The extent
of the comfort zone reflects the time gap which is considered
comfortable. In our implementation we choose a TTC of 3 s,
which corresponds to a conservative driving style. The length
of the comfort zone consequently depends on the vehicle’s
speed and thus can be adapted via braking (zone shrinks) or
acceleration (zone is enlarged).

Furthermore, we propose that an automated vehicle evalu-
ates whether its comfort zone is violated by a pedestrian –
currently or in the future. This is done by predicting future
pedestrian locations and intersecting them with the vehicle’s
future comfort zones (see Fig. 7a). The latter are derived
by shifting the current comfort zone along the planned path
assuming constant vehicle velocity (i.e. no change in system
behavior). In case of violations, the automated vehicle issues a
system reaction, e.g. braking, such that the pedestrian’s future
trajectory does not violate the adapted comfort zones anymore
(see Fig. 7b).

From the above considerations it becomes evident that com-
fortable driving requires large prediction horizons. Pedestrians
at least have to be predicted for a time horizon that corresponds
to the comfort zone’s time gap, i.e. 3 s in our case. To realize
natural driving behavior even larger horizons are required
such that future comfort zone violations can be anticipated.
Requirements on prediction accuracy can be relaxed for larger
prediction horizons as erroneous system reactions still can be
corrected in the future. However, to minimize false system
reactions it is required that behavior planning takes prediction
uncertainties into account. Pedestrian prediction models hence
should yield uncertainty estimates (e.g. in terms of probability
distributions over future pedestrian locations).
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t0

t0 + 1s

t0 + 2s

(a) without system reaction

t0

t0 + 1s

t0 + 2s

(b) with system reaction

Fig. 7. Illustration of the proposed procedure to derive appropriate system reactions. In (a) the system first evaluates whether a pedestrian will violate the
comfort zone in the future. In (b) a braking maneuver finally slows down the vehicle such that future comfort zone violations are circumvented. Dashed lines
depict the paths of the vehicle and the pedestrian. The red regions corresponds to the vehicle’s comfort zone.

It should be noted that the comfort zone is not necessarily
restricted to regions in front of the vehicle. Rather, it may
also cover a region behind the vehicle. This allows to evaluate
whether the vehicle can pass a pedestrian with a sufficient time
gap before the pedestrian enters the driving corridor. Similarly,
the comfort zone may be extended to include infrastructure
elements (e.g. zebra crossings as depicted in Fig. 8) such that
country-specific traffic rules are taken into account.

C. Prediction Performance Metric

Building on the AD system reaction we now derive an
application specific performance metric for our prediction
model. To this end we define pedestrian behavior prediction
as a binary classification task.

Fig. 8a shows a typical traffic scene with the trajectory of a
crossing pedestrian as well as the ego vehicle’s comfort zone.
The latter is referred to as region of interest (ROI) in the
following. The task of a pedestrian prediction is to anticipate
violations of the ROI, i.e. a classification whether a pedestrian
will be located inside the ROI in the future. We define the in-
ROI probability PROI

t+T at time t+ T as

PROI
t+T =

∫
xt+T∈ROIt+T

p(xt+T |x0:t, C) dxt+T , (1)

where ROIt+T denotes the predicted ROI and p(xt+T |x0:t, C)
the predictive distribution of pedestrian locations given the
pedestrian’s past trajectory x0:t and contextual cues C. Com-
puting the in-ROI probability requires integration of the pre-
dictive distribution over the ROI. This is approximated with a
Monte-Carlo approach using samples from the distribution.

Fig. 8b illustrates the evolvement of the scene and the
prediction over time. Specifically, the dashed line represents
the true state of the pedestrian with regard to being inside

the ROI for, say, T = 3 s prediction horizons, whereas the
solid blue line shows the predicted in-ROI probability for this
prediction horizon. Thresholding PROI

t+T finally yields an in-
ROI classification that is compared to the true state for each
sample t.

Thus we have defined a classification problem (with pre-

ROI

(a)

TP

FN FNTN TN

p
R

O
I

0
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ground truth

prediction pROI

time

threshold

(b)

Fig. 8. Illustration of the proposed performance metric. (a) Ground truth
pedestrian trajectory crossing the region of interest. (b) Prediction of in-ROI
probability (solid) and ground truth of in-ROI state (dashed). For one recorded
traffic scene, 3 s predictions of pedestrian and of ego vehicle ROI have been
started from all possible points in time (x-axis).
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dicted class probabilities) for which textbook metrics can be
applied. In particular, we choose the true positive rate (TPR)
and the false alarm rate (FAR) which are defined as

TPR = TP/(TP + FN) (2)
FAR = FP/(FP + TN), (3)

where TP, TN, FP, and FN denote number of true positive,
true negative, false positive, and false negative samples, re-
spectively. For metric calculation we accumulate classification
results over the set of test tracks, but exclude samples at
which a pedestrian has a TTC > 5 s. This is in order to
only consider predictions in the metric that could actually be
relevant for an AD system decision. Moreover, we individually
calculate the metric for different prediction time horizons, e.g.
T ∈ {1 s, 2 s, 3 s, 4 s}.

It should be noted that the sensitivity of the classification
can be adjusted by choosing different thresholds (see Fig. 8b).
We consequently obtain an ROC curve which is appealing
due to its intuitive interpretation. In particular, it allows for
studying the trade off between TPR and FAR which would
be difficult to define from requirements given a priori. A
drawback of the ROC metric is that it can not be used as a per-
track metric, because an individual pedestrian track contains
too little data to result in a sufficient statistic.

That is why we additionally employ the log loss metric for
development purposes. It can be computed per track so that
studying the effect of model changes on the performance for
specific tracks or kinds of traffic scenes is possible. On the
downside, this metric does not have an intuitive function-level
interpretation.

V. PEDESTRIAN PREDICTION MODEL

Section IV analyzes human driving behavior and derives an
expected AD system reaction pattern. Such a reaction pattern
requires judging whether the probability of a pedestrian being
inside a future comfort zone of the ego vehicle exceeds a
certain threshold. Based on this reaction pattern, we can derive
desired properties of prediction models:
• Prediction of a continuous distribution over future pedes-

trian locations for computing the likelihood of a pedes-
trian being inside the future comfort zone of the ego
vehicle,

• Predictive distributions over different prediction horizons
to evaluate comfort zone violations for different predic-
tion horizons,

• Ability to model complex multi-modal distributions as
future behavior can have several non-trivial modes (e.g.
going straight or crossing the street),

• Learning influences of the static and dynamic environ-
ment that affect the pedestrians behavior.

In Section II, we refer to several recent approaches for
pedestrian behavior prediction, which differ in terms of model
types, architectures, learning method, or availability of fea-
tures. However, most recent approaches use Deep Learning
(DL) models for learning complex, non-linear functional de-
pendencies from input features to the predicted behavior. Es-
pecially Conditional Variational Autoencoders (CVAEs) [16]

xt−H:t

st

z

xt+1:T

Fig. 9. CVAE with circles indicating random variables. Blue circles illustrate
measurements of dynamic xt−H:t and static features st, turquoise circles
illustrate latent variables, and green circles represent predicted variables.
Magenta arrows depict the prediction model, whereas green dashed arrows
illustrate the inference model of the latent variable.

have proven to be suitable for such use cases as they can learn
complex, continuous distributions by introducing continuous
latent variables. Furthermore, they allow to incorporate feature
observations by conditioning on them.

In this section, we introduce a model for pedestrian be-
havior prediction based on CVAEs and give an overview on
architectures for learning dependencies of different types of
features.

A. General Model

Traditional DL-based probabilistic models often predict
parameters of a pre-defined parametric distribution (e.g. Gaus-
sian). However, for many problems the actual shape of the
distribution is unknown and varies over situations. This fact
makes it difficult to specify a suitable parametric distribution.

To overcome this problem, we propose a pedestrian pre-
diction model based on a CVAE, which is depicted as a
graphical model in Fig. 9. The circles represent different types
of random variables: Blue circles correspond to measurements
(the pedestrian trajectory including dynamic features xt−H:t

of the last H timesteps and a respresentation of the static
environment st), the turquoise circle is a continuous latent
variable with prior p(z) (we stick to the Gaussian prior, which
is used in many publications, e.g. [16]), and the green circle
represents future pedestrian locations.

Sampling: The magenta arrows illustrate the sampling
process of the induced predictive distribution:

1) Observe a pedestrian trajectory xt−H:t and the environ-
ment around the pedestrian st.

2) Sample z from the Gaussian prior p(z) = N(z; 0, 1).
3) Sample xt+1:T from the conditional distribution

pθ(xt+1:T |xt−H:t, st, z).
Consequently, the predictive distribution of the CVAE (illus-
trated by magenta arrows), can be formulated as:

pθ(xt+1:T |xt−H:t, st) =

∫
z

pθ(xt+1:T |xt−H:t, st, z)p(z)dz.

(4)
We model pθ(xt+1:T |xt−H:t, st, z) by a multivariate normal
distribution with parameters being predicted by a neural net-
work. It should be emphasized however, that the predictive
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Fig. 10. DL-based architecture of the proposed CVAE. For inferring the latent
variable, the inference model uses encoded past observations of a pedestrian,
encoded static context of the environment, as well as the observed future
trajectory. In contrast, the predictive model does not have access to the future
trajectoy, but predicts future locations given past observation, static context,
and a sample of the latent variable z. The predictive and the inference model
share the same encoders of past observations and static context.

distiburion pθ(xt+1:T |xt−H:t, st) is not restricted to a multi-
variate Gaussian distribution but can be rather complex due to
the integral over the latent variable z.

Learning: During training, the CVAE utilizes an inference
model qφ(z|xt+1:T , xt−H:t, st) that infers a posterior distri-
bution over the latent variable z from measurements and the
observed future trajectory (green, dashed arrows in Fig. 9).
We train the full model by minimizing the evidence lower
bound (ELBO), which is a lower bound on the conditional
log likelihood of the model in Eq. (4):

Eqφ(z|xt−H:T ,st) [log pθ(xt+1:T |xt−H:t, st, z)]−DKL(qφ||p(z))
(5)

The first term corresponds to a reconstruction loss as used
for training autoencoders. Drawing on this analogy, we can
consider the inference model qφ as encoder, that encodes
past and future observations into the latent state z. Then,
the distribution pθ corresponds to the decoder, which tries
to reconstruct the future trajectory from the latent state. The
latter term is the Kullback–Leibler divergence DKL(qφ||p(z))
between the posterior distribution qφ and the prior distribution
p(z). This term forces the inference model to match the
uninformative Gaussian prior. Consequently, the first term
tries to encode information into z and the latter term tries
to prevent it. For qφ = p(z) the KL-term vanishes and no
information is incorporated into z. In this case, the model does
not make use of the latent space at all. However, this only
happens if the conditional model pθ(xt+1:T |xt−H:t, st, z) is
complex enough to model the data distribution without using z,
e.g. all modeling assumptions are correct (model complexity,
conditional Gaussian, etc.). This property of CVAEs enables
an adaptive model complexity that proves useful if complexity
varies over situations.

B. Baseline model and feature integration

A CVAE allows for integrating features by conditioning
on them. As indicated in Fig. 9 we propose to condition
on both static information at a particular timestep st as well
as dynamic information of the agents x0:t. For conditioning
on such information, we propose the DL-based architecture
depicted in Fig. 10.

We encode dynamic features of the agent xt−H:t (e.g.
relative motion between two timesteps, head pose, body pose,
distance to the ego vehicle) via recurrent encoders into an
embedding space. In addition, we represent the static environ-
ment around the pedestrian via a grid in birds eye view, where
different colors indicate different semantics (e.g. sidewalk,
road, zebra crossing, building, isle, bicycle lane, unknown).
These birds eye view grids are encoded via a small VGGNet
architecture to provide a static environment embedding vector.

Predictive model pθ(xt+1:T |xt−H:t, st, z) (dashed blue
rectangle): For the predictive model, the static environment
embedding, the dynamic environment embedding, as well as
a sample z from the Z-dimensional multivariate Gaussian
prior p(z) are concatenated together to form a feature vector.
This feature vector is transformed via an MLP to generate
parameters of a joint distribution over the future pedestrian
locations in x and y at four prediction timesteps (1s, 2s, 3s,
4s). We model the joint output distribution as an 8-dimensional
Gaussian distribution.

Inference model qφ(z|xt+1:T , xt−H:t, st) (dotted green
rectangle): The inference model qφ infers the latent variable
z that has created the observed future. As input the cor-
responding inference model receives the static environment
embedding, the dynamic environment embedding of the past,
and the relative future motion of the pedestrian, which are
concatenated into one joint feature vector. Then an MLP is
used to transform this feature vector into a Z-dimensional
Gaussian distribution.

Feature combinations: The proposed architecture allows
for flexible changes of input features and enables an ablation
study regarding the influence of different features on the
prediction performance. Table I denotes the features that we
have evaluated in this study. The most basic model only
conditions on the past motion of the pedestrian and does not
use any additional information. Hence, it can only learn future
predictions based on cues in the pedestrian trajectory itself.

TABLE I
DESCRIPTION OF FEATURES USED IN THE CVAE.

Feature Description
Motion Pedestrian relative motion (dx, dy) at every timestep.
Ego Distance between pedestrian and ego vehicle at every timestep.
Head Head pose of the pedestrian at every timestep.
Body Body pose of the pedestrian at every timestep.
Map Semantic map around the last position of the pedestrian.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

Training, validation and test subsets are drawn from three
round courses in our dataset. The fourth course is reserved for
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Fig. 11. ROI-based metric results of the full CVAE model (all features), a CVAE motion model (pedestrian motion feature only) and a linear Kalman Filter
baseline for different prediction horizons. The shaded bands denote the inter quartile interval per FAR.

studying the effects of areas not exposed to the model during
training. The dataset is split by first assembling the test set.
In order to be able to evaluate how pedestrian features like
head pose affect the prediction performance, the whole test
set needs to consist of labeled tracks. With the fraction of
labeled tracks in the dataset being comparatively small, the
test set has to be limited in size to ensure enough labeled
tracks are available for training. We decided to constrain the
test set size to 500 tracks while at the same time guaranteeing
a large variety of scenes. This is achieved by drawing from
the labeled subset via stratified random sampling, with each
category, e.g. crossing/not crossing, distance from ego vehicle,
crossing in front/behind the ego vehicle, being represented at
least once.

For training and validation, a minimum track length of 5s is
required to enable training of prediction horizons of up to 4s.
5% of the tracks fulfilling this criterion are randomly assigned
to the validation set, the remaining tracks form the training set.
Training and validation set contain 42,551 (7,175 labeled) and
2,278 (389 labeled), respectively.

B. Quantitative Evaluation

To benchmark the performance of the proposed CVAE
prediction model, we compare against a linear baseline that

employs Kalman Filtering (KF) using a constant velocity
model (KF motion). We provide results for a CVAE model
that solely uses a pedestrian’s past trajectory (CVAE motion)
as well as a CVAE model that employs a full feature set
(CVAE full) consisting of the pedestrian’s past trajectory, their
head and body poses, the semantic map and the past ego
vehicle’s trajectory. In this way the effect of contextual cues on
the prediction performance can be assessed. We run all three
models on the test dataset and evaluate the predictions using
the application-specific ROI-metric proposed in Sec. IV-C.

In order to assess the variance of the test results, evaluations
are repeated using the bootstrap method [42] with B = 20
replications. Each replication uses an artificial test set created
from the original test set by resampling 500 tracks with
replacement. The bootstrap method produces an estimate of
the variance that would be seen with completely new test data
taken from the same ground truth distribution of data.

The resulting ROC curves for different prediction horizons
are depicted in Fig. 11 (solid line: median TPR per FAR,
shaded area: inter quartile interval per FAR). It becomes
evident that the prediction accuracies of all models decrease
with increasing prediction horizons. For a prediction horizon
of 1 s all models achieve very good accuracies with the CVAE
models slightly outperforming the linear KF baseline. This
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TABLE II
PERFORMANCE OF PEDESTRIAN PREDICTION MODELS

Model ROI True Positive Rate (%) Negative Log-Likelihood ADE (m)
1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s

KF motion 94.3 81.5 86.0 84.1 2.40 3.96 4.89 5.47 0.62 1.26 1.99 2.87
CVAE motion 96.1 85.1 87.4 85.8 0.23 1.63 2.47 3.23 0.54 1.13 1.77 2.58
CVAE full 98.3 94.0 93.3 95.5 −0.20 1.11 1.95 2.72 0.47 0.96 1.50 2.23

result confirms that for short-term pedestrian prediction linear
prediction models are already well suited and that contextual
cues only have a minor benefit. However, the contrary holds
for prediction horizons of 2 to 4 s. While the CVAE motion
model just slightly surpasses the KF baseline, the full CVAE
model significantly outperforms it. Our results thus confirm the
importance of using contextual cues for long-term pedestrian
prediction.

For an application of prediction models in an AD system,
the performance at low FAR is of particular interest, since high
FAR would result in an unacceptable number of false system
reactions. However, acceptable FARs differ with respect to
prediction horizons – larger prediction horizons usually cor-
respond to less critical situations so that there is sufficient
time left to correct potential erroneous system reactions. We
hence allow for slightly larger FARs for long-term prediction
compared to very small FARs in the short-term prediction
case. Specifically, we consider FARs of 2.5%, 5%, 10%, and
15% as suitable working points for the 1 s, 2 s, 3 s, and 4 s
prediction models, respectively. The corresponding TPRs of
the three models are listed in Table II.

Table II further lists the respective values for the negative
log-likelihood and the ADE metric. We show ADE here
because it gives an impression of the order of magnitude of
the model error in terms of physical dimensions (meters). The
results reveal that the ADE values are quite strongly correlated
with the negative log-likelihood values in this case, which is in
contrast to our earlier statement about the applicability of ADE
to multimodal predictions (see Section II-C). Analysing model
predictions more closely as will be done in Section VI-D, we
notice that most model predictions are unimodal. We attribute
this to multimodal behavior being underrepresented in the
training data.

C. Feature Relevance Assessment

To analyze the relevance of different contextual cues we
performed an ablation study whose results are shown in
Table III. We list the true positive rate (TPR) and the negative
log-likelihood (NLL) for CVAE models that use different input
feature combinations, respectively. Numbers in large font are
medians from the bootstrap analysis, while small font numbers
indicate inter quartile ranges (25% and 75% quartile).

As expected, the consideration of contextual cues positively
influence model performance compared to the baseline CVAE
motion model, in particular for larger prediction time horizons.
This is in accordance with Fig. 11 and consistent across almost
all model variants. Subtle deviations from this general trend
will be discussed later in this section.

Furthermore, it is obvious that the map is crucial for good
prediction performance, when comparing models 1-4 (without
map) to models 5-8 (with map). The positive effect of using a
map is particularly pronounced for prediction horizons of 2 s
to 4 s. Checking the interquartile intervals of the corresponding
models with and without map, we see that they are non-
overlapping in most cases. This gives us confidence that the
differences in model performance are significant.

The 2 s to 4 s predictions with map further indicate that
adding either ego or head+body feature slightly improves
performance (models 6 and 7 compared to model 5). However,
the interquartile intervals for models 6 and 7 overlap strongly
with the intervals for model 5 in most cases. Instead, including
both features, i.e. ego+head+body, yields significantly better
results. This shows that the combination of them contains
valuable information. The same trend can be observed for the
set of models without map.

A notable exception to this general trend can be observed for
the ego feature (models 2 and 6), where the TPR deteriorates
for 3 s and 4 s prediction horizons. Interestingly, this effect
cannot be observed in NLL. Even though the effect is not
significant as the interquartile intervals strongly overlap, it is
still surprising that adding ego does tamper with the median
TPR. This might be caused by the metrics measuring different
aspects of model performance, while the training objective
is more correlated to NLL than to the ROI metric. The
investigation of more system-centric training objectives could
thus be a promising field of future research.

D. Qualitative Evaluation

The feature relevance assessment in Section VI-C indi-
cates that CVAE-based models with additional features can
significantly outperform the baseline. In the following, we
provide qualitative examples, which highlight the influence of
features on pedestrian prediction using our proposed CVAE-
based model. Fig. 12 illustrates two scenes that often occur
in urban scenarios. In the first scene, Fig. 12a and 12b, a
pedestrian is walking on the sidewalk (dark gray) parallel
to the street (light gray) and approaching a zebra crossing
(violet). The CVAE motion model in Fig. 12a does not have
information about the static environment and thus mainly
predicts straight walking with some uncertainty. Instead, the
CVAE with map feature in Fig. 12b was able to learn that
zebra crossings increase likelihoods of pedestrians to cross and
it correctly skews the distribution towards the zebra crossing,
while still keeping a mode for straight walking. The second
scene, Fig. 12c and 12d, shows a pedestrian that stands at
the side of a street and waits for crossing, while a car is
decelerating to let the pedestrian pass. The CVAE motion
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TABLE III
ABLATION STUDY OF CONTEXTUAL CUES

Model ROI True Positive Rate (%) Negative Log-Likelihood
1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s

1 CVAE motion 96.1 96.3
95.6 85.1 86.9

84.0 87.4 88.4
84.6 85.8 89.6

82.7 0.23 0.20
0.25 1.63 1.60

1.68 2.47 2.44
2.55 3.23 3.19

3.32

2 CVAE motion+ego 97.2 97.6
96.6 88.0 89.1

87.1 89.7 91.2
88.6 84.4 90.5

81.4 −0.10 −0.12
−0.07 1.32 1.28

1.38 2.20 2.15
2.26 3.05 2.98

3.14

3 CVAE motion+head+body 97.3 97.8
96.8 89.5 91.2

88.6 89.3 91.2
88.0 86.1 90.9

82.1 0.13 0.11
0.15 1.54 1.52

1.59 2.40 2.37
2.48 3.18 3.13

3.26

4 CVAE motion+ego+head+body 97.9 98.3
97.6 91.8 93.1

90.8 91.5 92.4
90.2 88.0 92.2

84.9 −0.12 −0.16
−0.10 1.29 1.25

1.34 2.16 2.11
2.24 2.97 2.89

3.05

5 CVAE motion+map 97.7 98.4
97.4 91.2 92.5

90.3 91.6 93.1
89.8 92.8 94.4

90.0 0.04 0.01
0.05 1.35 1.31

1.38 2.14 2.10
2.21 2.86 2.79

2.95

6 CVAE motion+map+ego 97.9 98.2
97.3 92.7 94.0

92.2 91.4 92.8
89.9 91.0 91.6

87.9 −0.17 −0.20
−0.15 1.17 1.14

1.21 1.99 1.95
2.06 2.79 2.71

2.87

7 CVAE motion+map+head+body 97.9 98.4
97.6 92.6 93.6

91.3 92.9 93.4
92.0 94.6 96.2

91.6 −0.02 −0.03
0.00 1.29 1.26

1.33 2.08 2.04
2.14 2.80 2.74

2.91

8 CVAE motion+map+ego+head+body 98.3 98.7
98.1 94.0 94.9

92.9 93.3 94.5
92.1 95.5 96.5

94.3 −0.20 −0.23
−0.18 1.11 1.08

1.14 1.95 1.91
2.02 2.72 2.65

2.82

road sidewalk zebra crossing refuge island cycle track building lawn

(a) Zebra crossing (features: motion)

(b) Zebra crossing (features: motion, map)

(c) Crossing without zebra (features: motion)

(d) Crossing without zebra (features: motion, map, ego)

Fig. 12. Pedestrian behavior prediction of the proposed model in two different scenarios. The circles indicate predictions for 1s (turquoise), 2s (blue), 3s
(purple), and 4s (magenta), while the dashed line with crosses indicate the groundtruth future trajectory. In the first scenario, depicted in (a) and (b), a
pedestrian is walking towards a zebra crossing after walking straight on the sidewalk, but parallel to the street. In the second scenario, depicted in (c) and
(d), a pedestrian is starting to cross the street without a zebra crossing, after a car has reduced its speed (prediction of the car is illustrated by a magenta box
at the top).

model in Fig. 12c with only pedestrian features is not able to
predict that the likelihood increases for the pedestrian to start
walking, while the CVAE model with map and ego vehicle
features in Fig. 12d picks up this information very fast and
predicts the pedestrian to cross the street.

VII. CONCLUSION

With the shift from advanced driver assistance systems
towards fully automated driving, novel requirements on pedes-
trian behavior prediction arise. In this paper we argued that
these requirements are not fully taken into account by estab-
lished evaluation procedures – particularly in terms of metrics
and datasets that are usually used to quantitatively assess pre-
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diction performance. We proposed a system-level approach to
bridge this gap: Based on a large dataset comprising thousands
of pedestrian-vehicle interactions, we analyzed human driving
patterns, designed corresponding reaction patterns of an AD
system, and finally derived respective requirements on a pedes-
trian behavior prediction component. Moreover, we proposed
a novel evaluation metric that measures the fulfillment of these
requirements and hence eases a system-level interpretation of
results. Our contribution thus shall stimulate future research on
system-level evaluation and optimization of prediction models.

We additionally proposed a CVAE-based model for pedes-
trian behavior prediction that allows for a flexible integration
of additional contextual cues. Using this model, we demon-
strated the importance of using scene context – particularly for
long-term prediction horizons that are of utmost importance
for AD systems. A thorough ablation study shed light on the
relative importance of different features. To this end we con-
clude that all investigated features aid the prediction task, but
to different extents: A semantic map most notably contributes
to an improved long-term prediction performance, whereas a
pedestrian’s head and body orientation yield positive effects
at smaller prediction horizons. Best results were obtained by
a combination of all features.

Our future work will focus on the integration and optimiza-
tion of the developed prediction component in an AD system.
Furthermore, we will investigate the relevance of additional
contextual features.
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APPENDIX A
IMPLEMENTATION DETAILS

A. Model Architecture

Recurrent encoder: We compute an embedding of the
observed pedestrian trajectory xt−H:t using a recurrent en-
coder. This encoder consists of two stacked Long Short-
Term Memory (LSTM) cells producing a 128 dimensional
embedding vector. Both cells use the same state size which
is determined for each input feature combination by means of
a hyperparameter search. The observation horizon H is set to
10 time steps, which corresponds to one second.

Map encoder: The static environment, represented as a
birds eye view semantic grid, is encoded via a small Convo-
lutional Neural Network (CNN). The CNN processes grids of
size 256×256 pixels, containing the agent’s local environment
of size 25.6 m×25.6 m centered around the position of the
pedestrian at the last conditioning time step. The architecture
of the CNN is defined by the shortcut notation:

C ′4-P -C ′8-P -C ′16-C ′16-P -C ′32-C ′32-P -C ′64-C ′64-P -F ′512-F100,

where Ci is a convolutional layer with i filters, a stride of 1
and a filter size of 3×3, P a max-pooling layer with non-
overlapping 2×2 regions and Fi a fully connected layer with i
output features. A prime marks layers which apply a ReLU
nonlinearity.

Feature transformers: The predictive model and the in-
ference model each use a Multilayer Perceptron (MLP) to
transform feature vectors to parameters of a n-dimensional
Gaussian distribution. The dimensionality n is set to 8 for
the predictive model and to 10 for the inference model. Both
MLPs consist of 3 fully connected layers and utilize ReLU
nonlinearities. The number of output features is identical in
each layer and derived using a hyperparameter search. Missing
features are replaced by a constant value of 0.

B. Model training

We perform a grid search to determine for each input
feature combination the best model. The parameters of our
hyperparameter search space are listed in Table IV. In total,
we train 60 models for each input feature combination and
pick the best model based on the validation hitrate. Models
are trained for 3000 epochs using the Adam optimizer and
a learning rate of 0.001. To augment the training data, we
randomly rotate the trajectories and environment maps.

Models with map Models without map
State size of LSTM cells 256, 384 256, 384
Features per MLP layer 256, 384, 512 384, 512, 640

Random seeds 1, . . . , 10 1, . . . , 10
TABLE IV

HYPERPARAMETER SEARCH SPACE.
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