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Abstract— This work explains the possible inferable 

information from a long-term video acquisition with cameras 

installed in close proximity to pedestrian movements with an 

unobstructed view of the entire intersection. The main goal is 

detecting implicit and explicit gestures and understanding 

communication and interactions between different types of road 

users. After explaining the designs of different gesture 

classification approaches, we relate the qualitative approach 

with our classification scheme for the extracted skeletons. To this 

end, a sequence with selected moving entities is selected and 

compared with the manually annotated video sequence. Results 

show the limitations of the automated approach and indicate a 

level of subjectivity in the manual annotation procedure. 

Subsequently, we discuss possibilities and restrictions of our 

approach and reflect on the importance of the specific conditions 

of video acquisitions. Depending on the field of view and distance 

between installed video cameras and moving vulnerable road 

users (VRUs), we are able to define the restrictions of our 

approach. As a result, we are able to define a selection of suitable 

applications for our approach. 

I. INTRODUCTION 

Vulnerable road users such as pedestrians, bicyclists or e-
scooter riders often come into interaction with multiple other 
types of road users in dense urban traffic situations. They also 
interact with each other as well as with the other road user 
types in areas that often lack markings or signage or where the 
different road user types are not segregated, such as designated 
pedestrian zones, sidewalks, shared surfaces, bicycle paths and 
road intersections. Due to the inherent flexibility of road user 
motion, there are a very high number of possible maneuvers 
and interactions with other road user types. 

In road traffic, people communicate not only via prescribed 
signals such as indicators, brake lights and horns, but also 
through informal communication channels. According to 
Merten [1], various options are available for communication: 
schema formation, anticipatory behavior, non-verbal 
communication, facial expressions, eye contact, gestures and 
body movements. The automation must also be able to 
perceive all of these informal signs and interpret them in the 
environmental context in order to predict the behavior of 
others. Based on this, the automation can adopt an adapted 
behavior, which must also be understood by other road users. 
Thus, understanding the movements, interactions and 
intentions of observable vulnerable road users together with 
inferable local knowledge is important for partially and fully 
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automated driving in urban areas to ensure safe and efficient 
traffic.  

Therefore, section II of this work explains historical and 
state-of-the-art research into estimating human poses from 
video data and understanding the communication of 
vulnerable road users participating in urban traffic. We name 
the most significant applications of pose estimation methods, 
explain the motion correspondence problem, and deliver basic 
insights on interactions and communications between traffic 
participants. 

This paper proposes an image-based method for extracting 
and classifying poses of pedestrians, cyclists, motorcyclists 
and e-scooter drivers from video data coming from a camera 
with a static position mounted at a high angle. 

After applying the pre-trained convolutional neural 
network (CNN) PoseNet [2] on selected video data of a 
complex urban intersection in Munich, Germany, we gather a 
massive collection of skeletal information data sets. In section 
III, we propose a methodology for tracking detected 
pedestrians between video frames as well as a projection 
approach for translating pixel coordinates into rectified 
geographic coordinates. Besides the tracking, the estimated 
poses of every detected individual can be classified into 
gestures and we introduce novel ideas of simple and efficient 
implementations. Additionally, we explain a qualitative 
manual annotation procedure as a suggestion for evaluating the 
detection and pose estimation approach. 

The outcomes of testing our approach on a select sample 
of the collected video data are presented in section IV.  

The problems and challenges of the proposed methodology 
are discussed in section V and related to the resulting outcomes 
of our case study. We outline encountered and potential 
problems, restrictions of the approach and its general 
usefulness for transport-related applications. 

Future steps and extensions of the presented applications 
are suggested in section VI. 

II. STATE OF THE ART IN POSE ESTIMATION AND 

UNDERSTANDING VRU COMMUNICATION 

A.  Pose estimation applications 

Early research on pose estimation focused on part-based 
models, such as that by Fischler and Elschlager [3] and 
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Felzenszwalb, et al. [4]. The Deformable Part Model (DPM) 
by Fischler and Elschlager [3] was the base for numerous 
probabilistic graphical models for two-dimensional pose 
estimation. In such approaches, body parts are detected 
together with constraints and properties between the parts. On 
the other hand, there are single person pose estimation 
procedures which use deep Convolutional Neural Networks 
(CNN) achieving high performances. 

Papandreou, et al. [2] divide multi-person pose estimation 
approaches into two groups, namely top-down and bottom-up 
detection procedures. The aim is to associate person part 
detections with person instances, where the top-down option 
implies the person detection first and subsequently the pose 
estimation In the bottom-up approaches, the first step 
corresponds to the detection of body parts and the second step 
to an association of the detected body parts to human instances 
[2]. 

The PoseNet model by Papandreou, et al. [2] can be used 
for typical state-of-the-art (2020) pose estimation of moving 
humans in image and video data. It consist of the two 
components: (1) person box detection, which is a Faster-
RCNN system [5], and (2) person pose estimation, which 
predicts all 17 key points per person per bounding box (from 
the first component).  The second component, the person pose 
estimation, consists of an (a) image cropping step, a (b) heat 
map and offset prediction with CNN step, a (c) model training 
step, a (d) pose rescoring step, and a (e) non-maximum 
suppression step based on object-key-point-similarity. Pose 
rescoring is estimated via a formula of the final instance-level 
pose detection based on the confidence of each key point by 
the maximization over locations and averaging key points. The 
last step in component 2e serves for excluding multiple 
detections in the person-detector stage. 

In addition to robust methodologies, high quality training 
data sets are essential to guarantee efficient motion capture 
approaches. Therefore, training data is often multivariate with 
pairs of high-resolution stereo images and LiDAR data along 
with two-dimensional image labels and three-dimensional 
labels of pedestrians in a global coordinate frame [6]. 
Labelling the data can be performed by either manual or 
automated annotation approaches. 

B.  On the motion correspondence problem 

First defined in the early 1990s, motion correspondence is 
described as a fundamental problem in computer vision and 
other disciplines [7] in which points measured at discrete time 
steps must be corresponded to points in previous and 
subsequent time steps in order to glean information about their 
motion. The problem originates from perception and vision 
research and focuses on extraction of motion and identifying 
physical directions from data often represented as arrays of 
dots [8]. There have been numerous suggested solutions for 
solving the motion correspondence problem, especially as 
extensions of the limitations of applying nearest neighbor 
algorithms [7, 9]. While in some cases, matching detected 
moving entities between the frames of a video appears trivial, 
there are instances where matching is challenging, such as in 
the case of numerous densely distributed moving objects. 
Therefore, Veenman, et al. [10] introduce existing greedy 
matching algorithms on individual, combined, and global 
motion models. These approaches take into account various 

constraints, such as trajectory smoothness and object speed 
limitations.  

C.  Interactions and communications between traffic 

participants 

According to Fuest, et al. [11], there is explicit and implicit 
communication in road traffic. Examples given of explicit 
communication were light signals, the horn and the use of an 
indicator. The term implicit communication in traffic was used 
for instance when a car slows down and thus signals to the 
pedestrian that he or she can cross the road. It was also 
described that non-verbal communication (e.g. a waving hand) 
in traffic is considered as explicit communication. Rasouli, et 
al. [12] also describe hand movements in road traffic as an 
explicit form of communication.  

In particular, Hürlimann and von Hebenstreit [13] 
distinguish between four forms of explicit and non-verbal 
communication of pedestrians. These are the gesture of grant, 
gesture of gratitude, gesture of intent and coercive gesture. The 
gesture of grant occurs most frequently, followed by the 
gesture of gratitude. The intentional gesture and the coercive 
gesture are used very rarely. If we look at the frequency 
distribution over the different age ranges, it is noticeable that 
the gesture of grant, gesture of gratitude and intentional 
gesture occurs in the middle age range with a maximum of 45 
to 65 years of age and the coercive gesture is mainly used by 
seniors over 65. Furthermore, the hand signals are mainly used 
at pedestrian crossings without light signal system (LSS) or 
unprotected areas and very rarely at LSS. 

In general, explicit gestures are rarely used, at only 3%, 
and even then, usually only as a reaction to driver actions. 
Instead, mostly implicit communication takes place. [12, 14]. 
In addition, Rasouli and Tsotsos [15] provide a comprehensive 
overview of 38 different factors involved in pedestrian 
decision-making process at the time of crossing when facing 
conventional cars or autonomous vehicles. Thereby, the 
factors that influence pedestrian behavior are divided into two 
groups: the ones that directly relate to pedestrians and 
environmental ones which relate to the surrounding context. 
Furthermore, Markkula, et al. [16] presented a conceptual 
framework for understanding interactive behavior in human 
and automated road traffic. The key contributions are a 
stringent definition of the term “interaction” and a taxonomy 
of the types of behaviors that road users exhibit in interactions 
which can be helpful for empirical methodologies in studying 
the interaction between road users. 

There are several ways to analyze the interaction between 
road traffic users in a qualitative form. For example, Rasouli, 
et al. [12] create temporal interaction diagrams of actions and 
events between pedestrians and drivers to document the 
temporal execution of actions and their sequence and above all 
to discover behavioral patterns in interaction as pictured in 
Figure 1. After the sequences have been identified, the 
frequencies of the respective actions can be displayed in the 
form of so-called Sankey diagrams in order to discover 
frequent behavior patterns as pictured in Figure 2, which in 
turn can be used to predict behavior. To generate this data, 
ground based videos [12] or observation protocols [17-19] are 
required. For example, an observer at the roadside can log the 
interaction using an HTML app on the tablet with predefined 
buttons for the actions of the pedestrian and the driver and also 
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general context information [20, 21] or a video recording can 
be edited afterwards using a video analysis software and 
temporal events and actions are logged. This procedure is very 
elaborate, subjectively and the observers need a high level of 
experience and knowledge of the domain. The reliability of the 
correct assignment of the actions, so that the protocol 
corresponds to the process in reality, could be increased by a 
preliminary observation in which three observers 
simultaneously record the same situations and their results are 
finally compared via the Cohens kappa to measure the 
interrater reliability. This ensures that the observer's 
assessments are objective.   

Additionally, the data can be enhanced by thought 
processes of the road users using questionnaires answered by 
the corresponding road users [22]. 

Figure 1. Temporal interaction diagram of actions and events between 

pedestrian and driver, adapted from Rasouli, et al. [12] 

 

Figure 2. Example of a Sankey diagram for sequences and their frequencies 

of head movements of a pedestrian when crossing 

 

Numerous applications focus on detecting and 
understanding pedestrians from the ego perspective of a 
highly-automated vehicle. As Fang and López [23] point out, 
the decision to cross a pedestrian crossing might be estimated 
with an overall accuracy and therefore use a combination of 
CNN-based pedestrian detection, tracking and pose 
estimation. Due to the restrictions of mounting a number of 
cameras at selected street light poles of an intersection, often 
systems have numerous sensors attached to one box. Other 
implementations of video cameras employ four cameras 
covering together the whole surface area of one intersection. 

III. METHODOLOGICAL APPROACH 

Our approach takes the geographical relations of transport 
infrastructural design elements into account when defining 
functional regions. Based on the surface areas with assigned 
transport infrastructure for pedestrians, cyclists (together with 
e-scooter drivers) and motorists, we are able to estimate the 
heightened possibility of pedestrians to illegally cross the road 
assigned for motorists and cyclists. The components of our 
approach are presented by a flow chart in Figure 3 and will be 
explained in the following. 

Figure 3. Flow chart of the presented approach for detecting skeletal 
information, solving the motion correspondence problem and analysing 

communication behaviour 

 

A.  Extracting skeletal information from pose estimation 

As already explained in subsection IIA, PoseNet is a vision 
model usable for human pose estimation in video data 
consisting of two successive stages. The first stage is the 
person box detection and cropping using a CNN backbone, 
which is pre-trained for image classification on ImageNet [24] 
and a Faster-RCNN system for person detection trained via the 
person category of the COCO person key points detection 
dataset [25] while ignoring the box annotations of the other 79 
COCO categories. With its 2016 version of the COCO dataset, 
we have annotations of the key points, distinguishing body 
joints from face landmarks [2]. The object key point similarity, 
ranging from 0 to 1, serves for estimating the matching quality 
between ground truth and predicted poses, and based on these, 
we are able to estimate the overall matching confidence via an 
average precision metric. 

We apply the pre-trained convolutional neural network 
(CNN) PoseNet [2] for multi-person detection and 2-D pose 
estimation on our video data sets showing a high angle view 
of the area of interest. 

This paper proposes an image-based method for extracting 
and classifying poses of pedestrians, cyclists and e-scooter 
drivers from video data coming from a camera with a static 
position mounted at a high angle. An additional camera was 
installed showing toward the south at a lower angle shot. An 
example view of extracted skeletal information is pictured in 
Figure 4. 

Figure 4. Resulting pose estimation via PoseNet of a video of an urban 

pedestrian area 

 

The subsequent procedure includes a transformation of 
pixel coordinates into geo-coordinates. By manually selecting 
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distinguishing features which appear in both the captured 
image and in satellite imagery (and by either assuming a 
roughly flat ground plane or estimating point elevations), a list 
of point correspondences between 2D pixel space and 3D geo-
coordinates can be generated. These, along with pre-calibrated 
intrinsic camera parameters, are then passed to a camera pose 
estimation algorithm, in our case OpenCV’s SolvePnPRansac 
function, in order to determine the camera’s position and 
orientation in 3D geo-coordinates. However, in order for this 
algorithm to function correctly, the input points in geo-space 
must first be normalized by subtracting out false northings and 
eastings so that the coordinate values are small. Using this 
information, we then deproject the skeletal centroids from 2D 
pixel space onto the 3D geo-space plane z=100 cm, a height 
which corresponds to an estimate of the average centroid 
height of all the observed skeletons. 

B.  Distinguishing and tracking different traffic participants 

After the deprojection of skeletal centroids from pixel 
coordinates to geo-coordinates, we apply a motion 
correspondence algorithm to associate skeletons from each 
frame into coherent trajectories, which then allows us to 
calculate the instantaneous speed and acceleration at every 
frame and to identify patterns of implicit gestures of 
pedestrians and cyclists. The various greedy matching 
algorithms described by Veenman, et al. [10] were tested, but 
since these are unable to cope with more than one consecutive 
frame of missed detection, we found that for our data they did 
not provide adequate results. Therefore, we implemented a 
variation on the nearest neighbor matching approach in which 
we iterate through each frame and for each point in that frame 
we calculate a generalized cost for a connection from that point 
to each of the points in the following N frames (in our case 
N=4) equal to the Euclidean distance plus some penalty for 
points in frames beyond the next one. Already-connected 
points are given infinite cost, and virtual “no-connection” 
points are generated with a moderate cost to allow for the 
possibility of trajectory termination. Using these costs, we then 
apply a linear sum assignment algorithm to find the least cost 
assignment of connections from points in the current frame to 
the subsequent frames. In Figure 5 example skeletons are 
shown of a motorcyclist (left) and a pedestrian (right). 

Figure 5. Example skeletons of a motorcyclist (left) and a pedestrian (right) 

 

C.  Differentiation of pedestrians and cyclists 

In order to differentiate between pedestrians and cyclists, 
we applied a k-means clustering algorithm to the speeds of 
each trajectory. With this approach, we see what appears to be 

moderately good class separation, as shown in Figure 6 with 
cluster estimation for k=3 based on average skeletal trajectory 
speed, its standard deviation and the maximum observed 
speed. As this is an unsupervised clustering approach, it is 
difficult to precisely evaluate the accuracy of the technique, 
but one can easily observe that trajectories which follow the 
street, tend to be grouped into a different cluster than 
trajectories which originate from the sidewalk and cross the 
street. 

Figure 6. Classified trajectories for k=3 based on aggregated skeletal point 

trajectory speed statistics 

 

D.  Manual annotation of pedestrian gestures 

In addition to the conventional approaches of annotating 
raw data with additional attribute values for producing training 
data sets for motion capture, pose estimation and 
classification, there are approaches for observational methods 
for generating qualitative data from conducted analyses. Silva, 
et al. [26] introduce a method called (re)Action for coding 
interactions, events and consequences in three successive 
steps, namely open coding, axial coding and selective coding. 
It follows Straussian Grounded Theory [27]. In the first step, 
open coding, we define the different types of actors with the 
respective types of actions. It refers to a specific video data set 
without having prior knowledge on investigation area and 
typical maneuvers of road user types. Additionally, so called 
dimensional ranges describe the attribute formats of every 
actor-action, as temporal, integer or string. This step ends 
when no further actor-action category can be found. 
Subsequently, axial coding defines relationships between 
actor-actions and introduces them as interaction events in a 
conditional event matrix. In the last step, selective coding, 
consequences of actor-actions and events are identified 
through a quantitative analysis of the annotations of the 
previous steps. As Silva, et al. [26] have a case study on 
violating bicycle infrastructure as bike paths and lanes, there 
is a selection of different usable dimensional ranges of actor-
actions including lateral positions, instantaneous speed, 
secondary activities and change of mode of transportation. For 
our cases study, we mainly focus on the identification of 
instantaneous speed and acceleration of detected road users, 
since these attributes indicate different road user types and 
implicit gestures as pedestrians slowing down their movement 
at specific locations. The latter is an example for an implicit 
gesture, where a pedestrian identifies a conflict with another 
road user. Whereas, accelerating pedestrians might indicate 
crossing a road segment assigned to vehicle drivers. 
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E.  Designing and relating gesture classification approaches 

In this paper we relate the quantitative and qualitative 
gesture classification approaches on one specific test data set. 
One focus is currently to distinguish pedestrians, cyclists, 
motorcyclists and e-scooter riders. Subsequently, the 
acceleration or instantaneous speed of generated trajectories 
(consisting of skeletal centroids) is used for detecting changes 
in movement that may relate to implicit gestures of road user. 
Other gesture classification approaches can include the 
clustering of repetitive skeletal movements based on an 
average pedestrian, cyclist, motorcyclist or e-scooter rider. 

IV. RESULTS 

In our experiments, we found that the pre-trained PoseNet 
algorithm provided overall reliable detection of skeletons, 
albeit with occasional missed detections, usually due to visual 
obstruction or similarity in clothing color to that of the 
background. In order to assess the detection accuracy of the 
proposed methodology, a randomly selected sample video of 
11.2 minutes consisting of 20208 frames was analyzed. In the 
video sample a total of 401513 skeletons were detected. In the 
trajectory generation step, each skeleton in each frame was 
reduced to a single representative point, each of which was 
then matched to a point in a future frame if possible. From 
these points, 23486 trajectories were generated, of which 
19280 had an endpoint not near the edge of the image. This 
implies that 95.2% of the skeletons were either matched to a 
trajectory in a future frame or ended a trajectory near the edge 
of the image. Still, 82.1% of all trajectories ended inside the 
image rather than at the image edge, indicating problems with 
occlusion and dropout. Figure 7 presents the heatmap of 
trajectory endpoints not near the image edge. As expected, the 
majority of endpoints are found around fixed obstacles, while 
relatively few are located in the inner parts of the image not 
near obstructions. Therefore, it is clear that the number and 
density of static and dynamic obstacles has a severe effect on 
the detection accuracy. 

Figure 7: Trajectory endpoint heatmap 

 

Disregarding trajectories ending near static obstacles 
(buildings, traffic signs, etc.), 50.1% of all matched trajectories 
ended unexpectedly, i.e. due to either dynamic obstacles such 
as vehicles, pedestrians, and cyclists or failed detections on the 
part of PoseNet due to measurement noise, lack of contrast 
between the subjects and the background, and random errors. 
Missed detections are also much more common for road users 
located farther from the camera who are thus represented by a 
smaller number of pixels. We also noted that the skeletal points 

detected in adjacent frames often exhibit a certain amount of 
noise, making tracking of fine movements challenging. Again, 
this is especially true of people who are situated far away from 
the camera. 

Despite the limitations, larger bodily movements can be 
readily detected if the orientation of the person in relation to 
the camera is favorable. Therefore, the proposed methodology 
can detect skeletal points with a high degree of accuracy. 
However, as a result of static and dynamic obstructions, 
continuous trajectories are often interrupted, which remains an 
area for future improvement. Future work could focus on 
developing a methodology for estimating a full 3D 
representation of each skeleton as opposed to the simple 2D 
pixel-space representation used here, which would allow for 
much more reliable gesture detection.  

In comparing several motion correspondence algorithms 
with our own modified nearest neighbor tracking approach, we 
found that while our approach is in some sense more naïve in 
that it does not consider trajectory smoothness, the ability to 
handle multiple consecutive missed point detections 
outweighs this disadvantage and provided better results on our 
data set as evaluated by manual verification. One reason for 
the success of our approach on this data set is the relatively 
moderate density of tracked points, which allows for less 
potential confusion between trajectories. In high-density data 
sets, more sophisticated approaches such as those described by 
Veenman, et al. [10] are likely to outperform ours. Future work 
could, expand our motion correspondence algorithm by adding 
cost penalties for unsmooth trajectories and compare the 
performance on higher-density data sets. 

V. DISCUSSION 

We have shown that the use of simple k-means clustering 
to differentiate between pedestrians and bicyclists with 
moderate accuracy is possible. One major limitation is that the 
skeletal representations exist in 2D pixel space and are thus not 
invariant to changes in location or orientation relative to the 
camera. A methodology for estimating 3D geo-coordinates for 
each skeletal point as mentioned previously would likely 
greatly improve the ability to differentiate the classes. 
Furthermore, different heuristic metrics than the ones used 
here could be tested, and instead of simply extracting statistical 
measures for the metrics over time, a frequency analysis 
technique could be employed, by which the dominant 
frequency could be extracted and used as an input to the 
clustering algorithm. 

VI. OUTLOOK 

With our approach, occupied space and how and when it is 
used can be examined further, as can the interaction of road 
users with their environment. The discussed methodology 
should be possible to be implemented also for real – time or 
near real – time applications considering the restrictions or the 
motion correspondence problem. In this context, the 
availability of key skeletal point positions of VRUs provides 
additional descriptive data for analyzing traffic situations and 
enables a broad selection of possible future applications. By 
including video data from additional nearby situated cameras 
or by using stereo cameras, it should be possible to more 
accurately detect road users and to deduce additional features 
such as three-dimensional skeletal information for more robust 
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gesture detection and to allow for the estimation of the heights 
of every pedestrian, cyclist or e-scooter rider, which can lead 
to better road user detection and classification. Patterns 
involving groups of road users classified via relevant 
operational and communication features might be then used as 
information for infrastructure to vehicle (I2V) 
communications and for supporting automated driving 
technologies. 

Also, typical maneuvers and typical interaction sequences 
can potentially be deduced from the skeletal point data 
enabling the analysis and data-driven modelling of traffic 
scenarios. For example, probabilities of crossing road 
segments by individual or groups of vulnerable road users 
might be useful for predicting behavioral patterns such as the 
violation of traffic regulations. These situations should be then 
defined as scenes of a fully defined scenario (for a detailed 
representation of the static model of the respective 
intersection). In addition to gesture classifications, it might be 
possible to apply various clustering techniques to find similar 
poses or sequences of detected gestures. Through the skeletal 
point data, typical traffic scenarios can then be identified and 
clustered enabling solutions in the area of automatic incident 
detection, traffic management and traffic safety. 
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