

TP1221: TS68 CAV TESTBEDS 1

<u>**@CITY** - <u>AUTOMATED</u> <u>CARS AND</u> <u>INTELLIGENT</u> <u>TRAFFIC IN THE CITY</u></u>

Prasant Narula
Engineering Group Manager – Automated Driving
Advanced Engineering
Aptiv Services Deutschland GmbH

OUTLINE

Project Setup

Partners

Structure

Current Developments

Timing and Milestones

CHALLENGES FOR AD IN URBAN ENVT.

Complexity of the environment:

- High information density and short reaction times
- Multiplicity of dynamically changing scenarios
- Occlusion of key objects for multiple observers
- Complex lane geometries
- Understanding of traffic topologies and flow patterns

Interactions with other road users:

- Detection of road users' intentions and likely behavior
- Prediction of the dynamic scenes with interactions
- ⊕ Interactions with vulnerable road users
- Mix of automated and non-automated vehicles

Interactions between the driver and the vehicle:

- Impact of higher degrees of automation on the driver's task
- User-friendly transitions between different degrees of automation

MOTIVATION AND GOALS

Safety:

- © Reduction in the number of urban accidents
- Seamless transition of automated driving functionality across road classes (not only on freeways and rural highways)
- Stress-free driving in spite of high traffic complexity

Efficiency:

- Better utilization of available infrastructure (roads, parking)
- Provision of intelligent infrastructure (HD maps, traffic signals, ...)
- Avoidance of apparent bottlenecks:
 road narrowing, opposing traffic, lane-merging, ...

Mobility:

- Support for all age groups: from novice drivers to seniors
- Demographic changes and urbanization

Accidents in Urban Envt.

PROJECT SETUP

PHASE I

Scope:

 Technologies, concepts and pilot applications for automated driving in city environment

Duration:

⊕ 4 years (01.09.2017 – 31.08.2021)

Total Budget:

⊕ 18.6 M€

Funding:

⊕ 7.8 M€

PHASE II

Scope:

- Implementation of the concepts specified in @CITY
- ⊕ Cross-Functional Sub-Project: HMI

Duration:

⊕ 4 years (01.07.2018 – 30.06.2022)

Total Budget:

⊕ 26.6 M€

Funding:

⊕ 12.5 M€

@CITY AND PROJECTS LANDSCAPE

PROJECT PARTNERS: @CITY

SMEs

OEMs

Suppliers

Research

PROJECT STRUCTURE

Environmental Perception and Situational Assessment (ES):

- Environmental perception in urban areas
- Situational assessment, prediction and interactions of road users

Digital Maps and Localization (KL):

- ⊕ High-resolution digital map as an additional sensor
- Localization based on landmarks

Concepts and Pilot Applications (KP):

- Definition, specification and simulation of use cases for the urban environment
- ⊕ Implementation of automated driving functions in pilot applications

SUB-PROJECT ES: ENVT. PERCEPTION & SITUATIONAL ASSESSMENT

Detection:

- Detection of road users and obstacles
- □ Landmark and infrastructure detection
- Classification of areas as free, occupied, unknown/occluded

Situational Awareness:

- Awareness of traffic topologies and flow patterns
- Verification by comparison with digital map data
- Detection of road users' intentions and likely behavior

Prediction:

- ⊕ Interpretation of indicators for upcoming behavior
- Use of prediction tools to improve environmental detection quality
- Prediction of scene dynamics with interactions

SUB-PROJECT ES: ENVT. PERCEPTION & SITUATIONAL ASSESSMENT

Embedding of the "Intersection" scenario in the overall context, as well as the rough subdivision of the scenario into six different sub-sections

Overview of the procedure of the scenario "Driving on a connecting route with a bottleneck"

SUB-PROJECT KL: DIGITAL MAPS AND LOCALIZATION

- Derivation of requirements for digital maps based on specified use cases
- Definition of map format and creation of a high-resolution base map

Localization:

- Sensor based self-localization and map matching relative to map content/attributes
- Defection and definition of landmarks, estimation of localization accuracy

Plausibility Check:

 Development of a metric to characterize data plausibility between maps and sensors

SUB-PROJECT KL: DIGITAL MAPS AND LOCALIZATION

Sonstige Hindernisse Fundament Ampelkästen Gullideckel (hinzugefügt @City)

SUB-PROJECT KP: CONCEPTS AND PILOT APPLICATIONS

Specifications and Concepts:

- System specification to facilitate AD in urban areas
- Definition of scenarios to ensure AD across urban nodes as well as interaction with VRUs
- Requirements specifications (feedback)

Pilot Applications , Dynamic Bottlenecks':

- Modelling of a scenario for planning
- Implementation of a suitable driving strategy
- Building up prototype test vehicles and testing the same with implemented ADFs

@CITY-AF

PROJECT PARTNERS: @CITY-AF

SMEs

OEMs

Suppliers

Research

PROJECT PARTNERS: @CITY-AF

SMEs

OEMs

Suppliers

Research

PROJECT STRUCTURE: @CITY-AF

Human-Machine-Interaction (MF):

- User interaction in complex traffic situations
- © Communication with other road users

Urban Nodes (UK):

- Urban nodes taking into account traffic rules and other road users
- Predictive and cooperative behavior at intersections and roundabouts

Urban Streets (US):

- Urban journey planning on connecting routes
- Methods for the traffic- and user-oriented realization of the driving strategy

Interaction with VRU (SV):

- Detection and Classification of VRUs
- Recognition and interpretation of relevant poses and gestures

SUB-PROJECT MF: HUMAN-MACHINE-INTERACTION

User Interaction in Complex Traffic Situations:

- Definition of driver-related interaction requirements and their evaluation with regard to their relevance for safety and acceptance
- Identification and development of relevant HMI components

Communication with Other Road Users:

- Scenario analysis of natural communication channels
- © Identification of relevant communication channels
- Development of communication and interaction concepts

Assessment:

- User studies, acceptance of automation concepts
- ⊕ Test methods & criteria for the evaluation of HMI concepts
- © Consistent evaluation methodology incl. standardization
- Design recommendations for HMI solutions in automated vehicles

SUB-PROJECT UK: AUTOMATED DRIVING ACROSS URBAN NODES

- Control of junctions as elementary situation building blocks in road traffic
- Predictive and cooperative behavior
- Development of driving strategies
- Environment and trajectory planning, traffic assessment and prediction
- Development of common methods for testing functional optimization: Use of simulation and tests to optimize the new ADFs

SUB-PROJECT US: AUTOMATED DRIVING ON URBAN STREETS

- Urban journey planning on connecting routes
- Methods for traffic- and user-oriented realization of the driving strategy
- Implementation in prototype test vehicles
- Joint system assessment
- Focus on characteristic scenarios:
 - Settlement traffic (e.g. traffic-calmed zones)
 - Bottlenecks (construction sites, delivery traffic, second row parkers)
 - Bus public transport (bus stop situation, bus stop bay with threading and unthreading)

SUB-PROJECT SV: INTERACTION WITH VRU

- VRUs in road traffic communicate consciously or unconsciously by means of poses and gestures, e.g. turning of a pedestrian's gaze, hand signal of a cyclist turning, etc.
- Traffic situations require cooperation with VRU, e.g. at pedestrian crossings
- Detection and Classification of VRUs
 - ⊕ Partial covering, pedestrian groups (group dynamics)
 - special VRUs like traffic policemen, construction workers,...
- Recognition and interpretation of relevant poses and gestures
- Intention prediction of VRUs / VRU groups taking into account the scene context

TIMING AND MILESTONES

MS 4: Evaluation phase completed

www.atcity-online.de

SUB-PROJECTS

SP 1
Environmental
Perception and
Situational Assessment

SP 2 Digital Maps and Localization

SP 3
Concepts
and
Pilot Applications

SP 4 Man- Machine Interaction

SP 5
Automated Driving
across
Urban Nodes

SP 6
Automated Driving
on
Urban Streets

SP 7 Interaction with Vulnerable Road Users

Neu Technologies, Concepts and Pilot Applications

Automated Driving Functions

Automatisiertes Fahren in der Stadt

THANK YOU